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Explicit approximate semigroup property of the semiclassical 
canonical density matrix 

R Baltin 
Institut fur Theoretische Physik A, Technische Universitat Braunschweig, Mendelssohn- 
strasse lA ,  33 Braunschweig, FRG 

Received 27 April 1977, in final form 5 September 1977 

Abstract. For a system of N identical particles it is shown explicitly by asymptotic analysis 
that the canonical density matrix in semiclassical approximation of orders 11' and h2 
has semigroup property approximately to orders ho and hZ, respectively. Similar 
approximations appearing in applications of the Trotter forniula have that property to 
order ho only for diagonal elements. 

1. Introduction 

The exact canonical density matrix or thermodynamic Green function C(x, x', p )  = 
(xlexp(-Pfi)lx') of a system of N identical particles with Hamiltonian fi and ,Cl = 
(ksT)-' forms a semigroup in the sense of equations (5) and (6) below. In general, this 
property is lost, however, if approximations to C are made. 

One of the basic approximations to C is the well known semiclassical or high 
temperature approach first given by Wigner (1932) and by Kirkwood (1933) for the 
diagonal elements of C. A corresponding expansion including off -diagonal elements 
has been derived by ter Haar (1954) to calculate quantum corrections to the second 
virial coefficient. In this work the density matrix is given as a product of the free- 
particle expression which is not analytical with respect to A,  and of an exponential of a 
power series of p. The latter exponential can be expanded again and re-ordered to 
yield a power series of A .  

Another high temperature expression appears as an initial approximation in the 
work of some authors (Storer 1968a, b, Grimm and Storer 1969, Handler and Wang 
1972, Handler 1973) who calculate the density matrix for low temperatures by means 
of the Trotter formula (Golden 1957, Nelson 1964). In this approach C is 
approximated for large p by a multiple product of matrices belonging to small p, and 
it is assumed implicitly that the high temperature factors of the product representation 
are good approximations and hence satisfy the semigroup condition quite well. 

It is the aim of the present work to investigate quantitatively to what extent the 
semigroup property is violated when C is replaced by the high temperature 
approximations mentioned. 

In § 2 some basic relations satisfied by the exact density matrix and its semiclassical 
approximation up to second order of A are recapitulated for Boltzmann statistics. In 
§ 3 the C matrix product appearing in equation (6) is evaluated by an asymptotic 
expansion. Clearly, the product cannot be calculated by expanding in powers of A and 
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equating coefficients because C has an essential singularity at h = 0. The resulting 
expression is manipulated further in §4. For the sake of completeness, quantum 
statistics is taken into account in 0 5 .  In § 6 the semigroup property is analysed for the 
high temperature matrix that appears in the Trotter formula. Results are summarised 
and discussed in the last section. 

2. The canonical density matrix and its semiclassical approximation for Boltzmann 
particles 

Let us consider a system of N identical particles obeying classical statistics with 
Hamiltonian 

A@)=-- h2 N v:z+v(x)=--v:+v(x) h2 
2m i = l  2m 

where x = ( x l ,  x2, , , ., XN) and xi is the position vector of the ith particle. From the 
complete set { q i ( x ) }  of eigenfunctions satisfying 

A (X )Qj (X ) = Ejqj (XI 

C(X, XI, C q T ( x ’ ) q j ( x )  exp(-PEj)=(xIexp(-PA)Ix’). (3) 

( 2 )  

the canonical density matrix is defined by 
W 

i= l  

C satisfies the Bloch equation 

Since the particles obey classical statistics and due to the completeness of the set of 
eigenfunctions, the initial condition for C is given by 

N 

i = l  
C(x,x’, O)=S(x-x’)= )-J S(x i -xI ) .  (5  1 

From orthonormality of the qi(x) it is readily Seen that 

d3”x’C(x, x‘, PI)C(X’, x”, P 2 )  = C(X, x”, P l + P 2 ) .  (6) 

The integration can be regarded at least formally as multiplication of the matrices 
C(pl )  and C&) with indices (x, x’) and (x’, x”), respectively, therefore equations ( 5 )  
and (6 )  can be rewritten 

C(Pl)C(PZ) = C(Pl+ P 2 )  (6a 1 

C(0) = I (5a)  

and 

where I is the identity matrix with elements S(x -x’). Thus the matrices C(P) form a 
semigroup. 
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Semiclassical or high temperature approximations to C have been given by ter 
Haar (1954) in the form 

m 

C(x, x’, P )  = CO(& x’, P )  exp( z1 a&”) 

where CO is the free-particle expression 

(7)  

In the work of Bruch and Revercomb (1973) the coefficients a,  are presented in a 
form which is especially suited for our approach. Let us retain the term alp in the 
exponent, and expand the higher terms as a power series of 0. Using the expressions 
for the a, and re-arranging the series according to powers of h2 we obtain up to terms 
of order h2: 

h2 
~ ‘ ~ ’ ( x ,  x’, P ) =  ~ ( x ,  XI, P )  exp(-pW(x, x ~ (  1 + % ( p 3 ~ ( x ,  x ’ ) - ~ ~ ~ x ,  .’)I) (9 )  

where 

K(x ,  x’) = 2 6‘ dA 6 d p  p(1 - h ) V , V ( u ( p ) )  . V , V ( u ( A ) )  ( l o b )  

1 

dA A ( l  - A ) V t V ( u ( h ) )  

U (A ) = X’ + A (X - x’). ( 1 0 4  
3 We have used the notation x .  y = Z E l  

component of xi. The coefficient a3 is given by 
xiay i ,  where xi, is the cuth Cartesian 

h2 
u3 = - K ( ~ ,  0(h4). 2m 

C‘*’ is a good approximation to C if the change of the potential is small compared to 
P-’  over a distance equal to the thermal wavelength 

A =  ( 2 ~ p h ~ / m ) ” ~ .  (1 1 )  

Concerning the first and the second derivatives of V this means 

Then, from the definitions of K and L, it is seen that the correction terms of equation 
(9)  are small compared to unity. 

It is the aim of the following to check the validity of relation (6 )  if C‘2’ is used 
instead of the exact expression which is unknown in general. 
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3. Asymptotic expansion of the semiclassical C matrix product 

We shall evaluate the left-hand side of equation (6) assuming that for P I  and P Z  
conditions (12a, b) are met. Introducing 

P = max(P1, P 2 )  (13a) 

0<71= P1IP s 1 (13b) 
0 s . 7 2  = & / p  s 1 (13c) 

we get 

c‘2’(x, XI, P1) 

(9a 1 
A corresponding expression holds for C”’(x’, x”, p2). When lx -%’I grows from zero 
to A the first exponential falls off rapidly while the remaining terms change only 
slowly. For the second exponential this follows from a Taylor series expansion of 
V(u(A))  about x which leads to 

W ( x , x ’ ) =  v(x)+;(x’-x).v,v(x)+. * .  . 
Due to (12a, 6) W changes only little when x’ runs through the domain Ix -x’I s A. 
Therefore, it is advisable to perform the integral of equation (6) by an asymptotic 
expansion about the point X in x’ space where, for x,x” being fixed, the rapidly 
decreasing part of the integrand reaches its maximum value. 

From equation (8) we obtain 

where we have set 

For 

f(x’) = 2x’.  (;+-J x XI1  - yx r2 

1 1  
T i  72 

y=-+-. 

f(x’) takes on its maximum 

m=-(-+-) 1 x XI’ 2 . 
Y 7 1  7 2  

Thus f(x‘) can be rewritten 

f(x’) = f(X)- y ( x ’  - q2. 
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Then the left-hand side of equation (6) becomes 

(21) 
AL72 

x (1 +- (&K(x’, x”)--p2L(xf,  x”))). 
457 

@(x’) is now expanded about x’ = X 

+. . .  a*o(x) 
axu, axai ax, @(x’)=@(X)+(Xki  -xui)-+t(xki -Xai)(Xbj-X*j) 

where the summation convention over repeated indices is adopted. Using new 
integration variables 

y =(7ry)1~2(x’-x) (23) 
we find 

B = (TY) -3N’2 [ d3Ny exp( -$) 

Integrating over the whole y space the term linear in y gives no contribution while the 
second-order term vanishes excepting the case a = S and i = j .  Thus 

Since in equation (21) terms of higher than second order of A have been neglected B 
is given to the same order by 
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Q(x)= R(X)[TiPi(PiK(X, X) 

- L(x, X)) + 72P2( P2K (X, x") - LW, x'"l+ v a  (XI/ Y.  (27) 

Inserting expression (25) into equation (19) and using equations (8), ( l l ) ,  (13b, c), and 
(16) we find 

(28) 
A(2)= Co(x, x", Pl+&)(R(X)+, A2 Q(X)+O(A4)). 

4. Proof of zeroth- and second-order semigroup property 

It is the aim of this section to cast equation (28) into a form that shows explicitly that 

1 C'O'(x, x', pl)C(O'(x', x", P 2 )  d 3 N ~ '  = A(') = C'O)(x , x" 9 P 1+P2)(1+O(h2)) 

I c(2)(x, xi, p1)c(2)(x/, x", p2) d3Nx' = A ( ~ ) =  c(2)(x, XI', p1 + p2)(1 + 0(h4)).  

(29) 

and 

(30) 

C(O) is the zeroth-order matrix which is obtained from C(2)  by neglecting the term of 
order h2 in the large round brackets of equation (9). 

4.1.  Zeroth order 

Consider first R(X). From equation (17) we obtain 

X + A  (X - X ) = X  + 7 1 ( 1 - A ) ( x ! ! - x )  

71 + 7 2  

(x -XI1) (31b) X"+  41 (X -x") = x"+- 4172 

7 1  + 72 

where Os A, 41 S 1. If we substitute (31a) for u(A) in equation ( loa)  and introduce 
the new variable of integration 

A '  = (71A + 72)/(71+ 7 2 )  

we find 

- P1 W(x, XI 
1 =-e I dA ' V[X + (1 - A ')(x" -x)] 

7 1-7 

1 

= -(p1+P2) [-7dA V[x"+A(x-x")] 

with 

7 7 1 / ( 7 1  + 72). 

In the same manner, setting 

41' = p (1 - 7) 
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we get from equation (31b) 
1-7 

- p2 w (X, x”) = - - p2 1 
1-7 0 

d p ’  V [ x ” + p ’ ( x  -x”)] 

1-T 

= - ( p l + p 2 ) l  dh V [ x ” + h ( x - x ” ) ] .  

Thus R (X), equation (26). becomes 

R ( X )  = exp( -(PI +Pz) [ dA V [ x ” + h  (x -x”)]) 

=exp[-(pl+PdW(x,  ~“11.  (34) 

Now it is seen readily that relation (29) holds. Since C(O) can be obtained from C(’) by 
formally letting K = L = 0 in equation (9) we gain A(’) from A‘2’, equation (28), by 
setting Q ( X )  = V2R (X)/ y. Then, with equation (34), we see that 

= C(O’(x, x”, p1+ P2)(1+ 0 ( h Z ) ) .  (35) 

Thus we have shown that the zeroth order density matrix has semigroup property to 
zeroth order of h. 

If C were a regular function of h at h = 0 it would be possible to expand 

C(x, x’, p )  = C‘O’(x, x’, p)+  0 ( h 2 )  

with C‘O’ independent of h. Then we could write 

I c(x, XI, pl)c(x’, XI‘, p2) d3%’ = c(o)(x, XI, p1)c(o)(x’ ,  xi!, p2)  d3”x’+ 0 ( h 2 ) .  

Since C is exact the left-hand side equals 

C(x, x”, P1+P2)=  C(O)(x,x”, Pl+P2)+O(h2). 

Thus we could conclude 

A(’)= C(O’(X, x”, pi + p 2 )  

i.e. C‘O’ would have exact semigroup property. 

to order ho. 
Hence, it is just the singularity at h = 0 that confines CfO) to have this property only 

4.2. Second order 

In order to prove equation (30) we have to solve the much more laborious task of 
transforming Q ( X ) .  

Using equation (31a) and the substitutions (32a)  and 

p ’ =  l - . r ( l -p )  (32c) 
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we find from (lob) 

1 - p '  A' K ( x , x ) = ~ l  2 l  dA ' I  dp'(l-A')(l--) 9 ( A ' , p ' )  
7 1-T 1-T 7 

where 

9 ( A ' ,  p ' ) = F [ ~ + A ' ( x - x " ) ]  .F [x"+p' ( .%-X' ' ) ]  

F ( u )  = V.V(u). 

A '  = ~ ( i  -7) 

Similarly, with (32b) and 

it follows from (3 1 b )  that 

Introducing 

G(u)  = V;V(u)  

and using (32a, d) we obtain 

1 1 - A '  
L(x, X) = [l, dA '( 1 - ~ ) ( l  - A  ')G[x" + A '(x -x")] 

7 

1 A '  
L(X,  x") = - '-' dA ' A ' ( 1 - -) G [x" + A '(x - x")]. 

0 1-7 

Furthermore we have to treat V 2 R ( X ) .  Differentiating equation (26) with respect to 
X we find, noting equations (loa, d), (38), and (39): 

V2R (X) = R (X) (DI+  0 2  + 0 3  + Dq + D5) (41) 

where the terms in brackets are given by 
1 2 

D1= (PI 1 dA (1 - A)F[X + A  (x -X)]) 

= p dA 6' dp ( 1 - A )( 1 - p )F[x + 7 (1 - A )(x" - x ')I . F [ x  + T( 1 - p )(x" - x )] 

dp'(1-A')(l -p')P(A', p') ,  
P :  -_ - 

Substitutions (32a, c )  have been used. Then with (32a, b) 

D2" 2p1p2 6' dA(1 -A)F[X + A  (x -X)] . dw pF[x"+p(X -x")] i' 
1 

= 2p 1P2 d A ( 1 - A ) dp pF[x + T( 1 - A )(XI' - x )] . F[ xr' + (1 - ~ ) p  (x - x")] 

1-T 
- - 2 2P1P2 dA'(1 - A ' )  1 dp' p'P(A', p' ) .  
7 (1-7)2  
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Using (326, d )  we find 

= P: dh d p  Ap F[x" + (1 - r)A (x - x")] . F[x" + (1 - r ) p  (X - x")] 

The last two terms of equation (41) are 
1 

D4= - P1 5, dA (1 - A )2G[ X + A  (x - X)] 
1 

_ - -  - 'I: Jl -T dh ' ( 1 - A f)2 G [ x " + A (x - x ")I 
1 

dAA2G[x"+A(X-x")] 

1-7 

dh ' A ' 2 G [ ~ " +  A '(x -xf')]. 

When expressions (36a, b) ,  (40a, b),  (42a, b, c), and (43a, b )  are inserted into equa- 
tion (27), it is convenient to group together certain terms. 

Consider first terms containing 8. Noting that 

C L -  
7 7 1  

1 - P -  TTZ(1-P) I--- 

A 7 1  1 --= l - A - - A  
1 - 7  72 

we can establish after some algebra 

TlP:K(X,X)+[(DI +D2)lY1 
1 1 

= 2P2(71 + ~ 2 ) ~  dh (1 - A  )[ 19 dk 

Reversing the order of integration we find 
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which is equal to 

for any integrand g(A, P )  symmetric with respect to interchange of A and p,  Since this 
is the case for 

the last two terms of equation (44) cancel each other. Similarly, the cancellation of the 
two last terms of equation (45) can be shown. 

Adding equations (44) and (45) we thus get 

TiP:K (X, x )  + T@%(X, X I ’ )  + [(Dl DZ + o3)/rl 

For the terms containing G = G[x”+A(x -x”)] we obtain 

- 4 1 L ( x ,  X ) + ( D d / Y )  
1 

= - P ( ~ 1 + ~ ~ ) ’ ( ~ ~ - ~ d A ( ~ 2 / 7 1 ) ( 1  -AI2G 

dh [A - (n/n)(l -A)] (  1 - A  )G) 

1 

= - P ( n +  72)’ I1-, dh A (1 - A)G. (47) 

Using equations (46) and (49) we finally get from equation (27): 

which shows together with equations (S), (28) and (34) the validity of equation (30). 
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5. Consideration of quantum statistics 

By definition, the canonical density matrix C' for bosons (plus sign) or fermions 
(minus sign) is obtained from expression (3) by properly symmetrising the wavefunc- 
tions. However, C' can also be calculated from C without knowledge of individual 
wavef unctions. 

= (xi, si), si being the spin variable of the ith particle, and i$ = (&, , . ,, &). 
By means of the symmetriser (+) or antisymmetriser (-) 

Let 

where pe is associated with a permutation 9 of the ti such that PeG(&)= G(96)  (G 
arbitrary) the exact density matrix is given by 

C*(S, 6'9 P>=C qf*(B')q ' f (~)exp(-PEi)  
i 

= exp(-pEi) 1 s:,qT(&qj(~)= exp(-pA)S';,ji;S(~-5'). 

fi is supposed here to be spin independent. 9; are the properly symmetrised eigen- 
functions obtained from the unsymmetrised Pi by application of 3:. In the last line 
the completeness relation of the Pi was used: 

i 

N 

i i = l  
C q T ( ~ ' ) q j ( ~ ) = S ( ~ - ~ ' ) ~ ~ ( x - X ' ) ~ , , , , ~  fl S(Xi -x:)&i,s;. 

From f i & ( ~ - f ) = $ , ' S ( ~ - ~ ' )  it follows that 

s;s(& - 6') = S ; . S ( t  - 6'). 
Since 3; is idempotent we find 

c*(&,t', ~ ) = e x p ( - ~ E i ) S ; s ( ~ - ~ ' ) = s ; ~ ( x ,  XI, p ) ~ , , ,  ( 5 1 )  

C*@, 5'7 P ) =  Sa%, XI, P)&,,, 

because 3; commutes with &. Equivalently we can write 

(51a)  
which is seen immediately from equations (SO) and (5 1).  

the Ith order approximation to C* is 
Let us now turn to the semiclassical approximation. According to equation ( 5 1 ) ,  

C*(!)(t, t', p )  = s;c(')(x, x', P ) S , , '  (1 = 0,2)  ( 5 2 )  
where C(') is given by equations (9) and (lOa)-(lOd), and C(O) is obtained from C(*) 
by neglecting the quantum correction in the large round brackets of equation (9). 

Instead of equation ( 5 2 )  we may write alternatively 

C*(')(&, t', p> = S;,cyr, XI, P)S,,,, 

PXC"'(X, x', p )  = P,tC(')(X, x', p ) ,  

(I = 0, 2). 

To see this let us factorise @6=pxfis where fix and P, permute spatial and spin 
coordinates, respectively. First we show that 

(53) 
Obviously, this relation holds for C&, x', p),  equation (8). Further we note that for 
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an arbitrary function r (u(A)) ,  where u(A) is defined by equation (lOd), the relation 

PJ(U ( A  )) = r{?P [ 9- l~  ' + A (X - 9'- 'X ')I} = $2' ~ ( P u  (A )) 

holds. If r is identified with the potential which is symmetric with respect to permu- 
tation of particles we get 

fix V(U (A )) = Pi,' V(U (A )) 

whence it follows from equation ( loa )  that 

Px,w(x, x') = Pi,' W(x ,  x'). (54) 
To show the same property for K ( x ,  x'), equation (lob), let U'(@) = Pu(p) .  Then 

P x  (Vu(,) V(U (P >) Vu(* ) V(U (A 1)) 
=Pi,' ( V ~ ~ ( w ) V ( ~ ' ( ~ ) )  V~YA)V(~' (A))I  

=Pi.' C V";(,)V(U(CL))- V~;<A)V(U(A)) 
N 

j = 1  

N 

= Pi? c Vu,(,,V(U(@)) VUio)V(u(A 1) 
i = l  

where we have summed over i = Pj in the third line. Therefore 

PxK(x, x')= P i k ( x ,  x'). ( 5 5 )  

PxL(x, x') = &'L(x, x'). (56)  

In a manner quite similar we find 

Thus, using equations (54), (55) and (56) we arrive at equation (53) which immedi- 
ately leads to 

3;c(')(x, x', p)s,,,, 
1 

= - 1 (f 1)~Psss,,,Pxc(')(x, x', 6 )  
N !  P 

= S;c"'(x, x', P ) S , , ,  

and hence to equation (52a). 
After these preliminaries we are able to evaluate 

A*(')=; d 3 N ~ '  C*(')(&, &', ,Gl)C*(')(&, &', P 2 )  

(57) 

by inserting equation (52) for the first factor of the integrand and equation (52a) for 
the second. The symmetrisers can be taken out of the integral sign. Using equations 
(29) and (30) we obtain 
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This is the quantum statistical equivalent to relations (29) and (30). Since, however, 
the term O(h'+') depends on x and x" too, the right-hand side of equation (58) cannot 
be cast into the form 

C*"'(5,5", P1 +P2)(1 +o(~'+*)) 
in constrast to equations (29) and (30) valid €or classical statistics. 

6. Application to the high temperature approximation appearing in the Trotter 
formula 

The Trotter formula expresses exp( -OB) where fi = f + Q and [?', Q] # 0 as an 
infinite product 

In an approximation scheme, we can choose for a given value of /3 a finite n such that 
P ' = P / n  satisfies (12a) and (12b). Thus in the coordinate representation we start 
from a high temperature approximation 

C(x, x', p' )= (xlexp(-P'Q)exp(-P'~)lx') 

= Cob, x', P ' )  exp(-P'V(x>) 
and have to calculate matrix products, i.e. integrals of the form 

a = d3"x' c(x, x',  Pl)c(x ' ,  x", P2).  ! 
In the frame of the present work we are interested in the deviation of 
C(x, x", P1 + P2).  A derivation quite analogous to that given in 0 3 yields 

from 

A = CO(& x", P1+ P 2 W  (XI+ O(AZ)) 

where R is now given by 

R (XI = exp( - P 1 V ( x )  - P 2  V(X)). 
Thus we obtain 

1 d3"xf c(x, x', Pl)e(x', x", P 2 )  = c (~ ,  x", 01 +P2)(U + O(h2)) (59a) 

with 

U = exp[-P2(V(X)- V(x))l. 1 
If we use as an initial high temperature approximation instead of equation (58a) the 
expression (Storer 1968a): 

C(x, x', ~ ' ) = ( x l e x p ( - ~ ' Q / 2 ) e x p ( - ~ ' ~ ) e x p ( - p ' ~ / / 2 ) l x ' )  

= Cdx, x', P ' )  exp[-P'(V(x)+ V(x'))/21 (58b) 
which is symmetric with respect to interchange of x and x', we find 
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Therefore, the high temperature expressions which are used in the Trotter product 
representation have semigroup property not even to zeroth order of h excepting the 
diagonal elements (x =x”) as is seen from the definition of X, equation (17).  

For sufficiently small /x -x”( we can expand V ( x )  and V(x”)  about X. We get 

A corresponding Taylor series holds for V(x”).  Inserting these into equations (60a)  
and (60b) we obtain 

and 

showing explicitly that semigroup condition equation ( 6 )  to order ho is satisfied only 
for constant V in the case of equation (58a)  and for linear V in the case of equation 
(58b)  unless x = x”. 

7. Conclusions 

It has been shown by use of asymptotic analysis that the canonical density matrix 
C(x, x’, p )  in semiclassical approximation to orders ho and h2 satisfies the semigroup 
condition, equation (6),  to orders ho and h2, respectively. These results suggest that 
equation (6)  is satisfied to n th order of h2 if the corresponding n th order semiclassical 
approximation is inserted. Since, however, the calculation becomes very intricate the 
above analysis has not been extended to higher n.  

If the particles obey classical statistics equations (29) and (30) are valid. Especi- 
ally, for the zeroth-order approximation C‘O’ equation (35) gives the second-order 
deviation from perfect semigroup property. It is noteworthy that C(O) had that 
property exactly if C‘O) were regular at h = 0. 

For bosons or fermions similar relations, see equation (58),  can be derived from 
the case of classical statistics. However, equation (58)  cannot be brought to a form 
that is entirely equivalent to expressions (29) or (30). 

The foregoing analysis has also been applied to those high temperature 
approximations of the density matrix which are used as a starting point in evaluations 
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of the Trotter formula. As is seen from equations (59a), (60a) and (596), (606), the 
semigroup property to order ho is in general satisfied only along the diagonal. There- 
fore it might be advantageous in a numerical application of Trotter's formula to start 
with the proper semiclassical expansion of equation (9) instead of expressions (58a )  or 
(58b) .  

In a preliminary calculation the formalism has been applied to the linear harmonic 
oscillator for control, The low temperature density matrix has been determined by 
iterative matrix multiplication starting from the semiclassical approximation, equa- 
tions (9) and (lOa)-(lOd), and from the more conventional approximation, equation 
(58b),  as well. The expressions obtained in this manner have been used then, by 
means of a projecting technique to be described elsewhere, to get the lowest ten 
energy levels. It turns out that the relative errors of the approximate eigenvalues are 
smaller by a factor of about 30-100 if the quantum corrected semiclassical expression 
is used instead of equation (586). This supports strongly the assumption of improved 
convergence also in other cases. However, a general proof of convergence is not 
known so far, neither for the series equation (9) nor for the Wigner-Kirkwood 
expansion that emerges from equation (9) if x' = x. 

The integrals involved in the high temperature expansion of the density matrices 
can be explicitly evaluated for a large class of potential functions, e.g. polynomials, 
hyperbolic functions, trigonometric sums the latter describing periodic potentials. 

In deriving the semiclassical approximation it has been assumed that the potential 
is smooth. Therefore, this approximation scheme cannot be applied directly to 
potentials having cusps, discontinuities, or singularities. Nevertheless, if V tends to 
+CO at some point, meaningful results can yet be obtained from equation (9) (as is the 
case, e.g. for the Lennard-Jones potential at r = 0), since the factor exp( - p W )  tends 
much faster to zero than the correction terms can diverge. 

In general it is possible, however, to attack potentials which are not smooth using 
an indirect approach by combining the semiclassical approximation with a modified 
perturbation theory. The underlying idea is as follows. In many cases V ( x )  can be 
approximated by a smooth potential o(x) for which the expansion equation (9) does 
exist yielding e(') if higher correction terms are disregarded. From c") an effective 
potential Vefi(x, x', p )  can then be specified explicitly such that the Bloch equation 
written down with Ve, has the exact solution c(*). C(') belonging to V is then 
obtained by low-order perturbation theory where e") is taken to be the unperturbed 
matrix. The perturbation V -  vefi is, of course, much smaller than V itself, V being 
the perturbation if one starts from the free-particle matrix as unperturbed quantity. 

For example, the attractive Coulomb potential V(r )  = - e 2 / r  can be approximated 
by the smooth potential v(r) = - e 2  tanh(cr)/r where the parameter c is still adjust- 
able. If c is chosen appropriately v is a good approximation to V except in the small 
region near r = 0. Since, however, in a perturbational treatment spatial integrations 
are involved the contribution even of the Coulomb singularity remains finite due to 
the factor r2  of the volume element. Details of this procedure will be published in the 
near future. 
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